The University of the State of New York
 REGENTS HIGH SCHOOL EXAMINATION

GEOMETRY

Thursday, January 28, 2010-9:15 a.m. to 12:15 p.m., only
Student Name:
School Name:
Print your name and the name of your school on the lines above. Then turn to the last page of this booklet, which is the answer sheet for Part I. Fold the last page along the perforations and, slowly and carefully, tear off the answer sheet. Then fill in the heading of your answer sheet.

This examination has four parts, with a total of 38 questions. You must answer all questions in this examination. Write your answers to the Part I multiple-choice questions on the separate answer sheet. Write your answers to the questions in Parts II, III, and IV directly in this booklet. All work should be written in pen, except graphs and drawings, which should be done in pencil. Clearly indicate the necessary steps, including appropriate formula substitutions, diagrams, graphs, charts, etc.

The formulas that you may need to answer some questions in this examination are found at the end of the examination. This sheet is perforated so you may remove it from this booklet.

Scrap paper is not permitted for any part of this examination, but you may use the blank spaces in this booklet as scrap paper. A perforated sheet of scrap graph paper is provided at the end of this booklet for any question for which graphing may be helpful but is not required. You may remove this sheet from this booklet. Any work done on this sheet of scrap graph paper will not be scored.

When you have completed the examination, you must sign the statement printed at the end of the answer sheet, indicating that you had no unlawful knowledge of the questions or answers prior to the examination and that you have neither given nor received assistance in answering any of the questions during the examination. Your answer sheet cannot be accepted if you fail to sign this declaration.

Notice...
A graphing calculator, a straightedge (ruler), and a compass must be available for you to use while taking this examination.

The use of any communications device is strictly prohibited when taking this examination. If you use any communications device, no matter how briefly, your examination will be invalidated and no score will be calculated for you.

Answer all 28 questions in this part. Each correct answer will receive 2 credits. No partial credit will be allowed. For each question, write on the separate answer sheet the numeral preceding the word or expression that best completes the statement or answers the question. [56]

Use this space for
1 In the diagram below of trapezoid $R S U T, \overline{R S} \| \overline{T U}, X$ is the midpoint computations. of $\overline{R T}$, and V is the midpoint of $\overline{S U}$.

Because X ard V are
midpoints, XV is the midsegment of the trapezoid, audits length is equal to the average of $\overline{R S}$
and $\overline{T U}$.

$$
\frac{30+x}{2}=44
$$

2 In $\triangle A B C, \mathrm{~m} \angle A=x, \mathrm{~m} \angle B=2 x+2$, and $\mathrm{m} \angle C=3 x+4$. What is the value of x ?
(1) 29
(3) 59
(2) 31
(4) 61

$$
\begin{aligned}
x+2 x+2+3 x+4 & =180 \\
6 x+6 & =180 \\
6 x & =174 \\
x & =29
\end{aligned}
$$

Use this space for computations.

3 Which expression best describes the transformation shown in the diagram below?

(1) same orientation; reflection
(2) opposite orientation; reflection
(3) same orientation; translation
(4) opposite orientation; translation

4 Based on the construction below, which statement must be true?

(1) $\mathrm{m} \angle A B D=\frac{1}{2} \mathrm{~m} \angle C B D$
(3) $\mathrm{m} \angle A B D=\mathrm{m} \angle A B C$
(2) $\mathrm{m} \angle A B D=\mathrm{m} \angle C B D$
(4) $\mathrm{m} \angle C B D=\frac{1}{2} \mathrm{~m} \angle A B D$

Use this space for computations.

5 In the diagram below, $\triangle A B C$ is inscribed in circle P. The distances from the center of circle P to each side of the triangle are shown.

The closer a chord is to the center of a circle, the longer the chord.

Which statement about the sides of the triangle is true?
(1)) $A B>A C>B C$
(3) $A C>A B>B C$
(2) $A B<A C$ and $A C>B C$
(4) $A C=A B$ and $A B>B C$

6 Which transformation is not always an isometry?
(1) rotation
(3) reflection
(2) dilation
(4) translation

7 In $\triangle A B C, \overline{A B} \cong \overline{B C}$. An altitude is drawn from B to $\overline{A C}$ and intersects $\overline{A C}$ at D. Which statement is not always true?
(1) $\angle A B D \cong \angle C B D$
(3) $\overline{A D} \cong \overline{B D}$
(2) $\angle B D A \cong \angle B D C$
(4) $\overline{A D} \cong \overline{D C}$

Use this space for computations.

8 In the diagram below, tangent $\overline{P A}$ and secant $\overline{P B C}$ are drawn to circle O from external point P.

$$
\begin{aligned}
W E & =W E \\
x^{2} & =9 \cdot 4 \\
x^{2} & =36 \\
x & =6
\end{aligned}
$$

If $P B=4$ and $B C=5$, what is the length of $\overline{P A}$?
(1) 20
(3) 8
(2) 9
(4) 6

9 Which geometric principle is used to justify the construction below?

(1) A line perpendicular to one of two parallel lines is perpendicular to the other.
(2) Two lines are perpendicular if they intersect to form congruent adjacent angles.
(3) When two lines are intersected by a transversal and alternate interior angles are congruent, the lines are parallel.
(4) When two lines are intersected by a transversal and the corresponding angles are congruent, the lines are parallel.

Use this space for computations.

10 Which equation represents the circle whose center is $(-2,3)$ and whose radius is 5 ?
(1) $(x-2)^{2}+(y+3)^{2}=5$
(3) $(x+2)^{2}+(y-3)^{2}=25$
(2) $(x+2)^{2}+(y-3)^{2}=5$
(4) $(x-2)^{2}+(y+3)^{2}=25$

11 Towns A and B are 16 miles apart. How many points are 10 miles from town A and 12 miles from town B ?
(1) 1
(3) 3
(4) 0

$$
16<10+12
$$

12 Lines j and k intersect at point P. Line m is drawn so that it is perpendicular to lines j and k at point P. Which statement is correct?
(1) Lines j and k are in perpendicular planes.
(2) Line m is in the same plane as lines j and k.
(3) Line m is parallel to the plane containing lines j and k.
(4) Line m is perpendicular to the plane containing lines j and k.

13 In the diagram below of parallelogram $S T U V, S V=x+3$, $V U=2 x-1$, and $T U=4 x-3$.

$$
\begin{gathered}
4 x-3=x+3 \\
3 x=6 \\
x=2
\end{gathered}
$$

What is the length of $\overline{S V}$?
(1) 5
(3) 7

$$
\begin{aligned}
\overline{S V} & =x+3 \\
& =2+3 \\
& =5
\end{aligned}
$$

(2) 2
(4) 4

14 Which equation represents a line parallel to the line whose equation
is $2 y-5 x=10$? $\quad n=\frac{-\hat{A}}{B}=$
(1) $5 y-2 x=25$
(2) $5 y+2 x=10$
(4) $2 y+10 x=8$
$-\frac{A}{6}=\frac{10}{4}=\frac{5}{2}$

Use this space for
15 In the diagram below of circle O, chords $\overline{A D}$ and $\overline{B C}$ intersect at E, computations. $\mathrm{m} \overparen{A C}=87$, and $\mathrm{m} \overparen{B D}=35$.

What is the degree measure of $\angle C E A$?
(1) 87
(3) 43.5
(2) 61
(4) 26

16 In the diagram below of $\triangle A D B, \mathrm{~m} \angle B D A=90, A D=5 \sqrt{2}$, and $A B=2 \sqrt{15}$.

$$
\begin{aligned}
a^{2}+(5 \sqrt{2})^{2} & =(2 \sqrt{15})^{2} \\
a^{2}+(25 \cdot 2) & =(4 \cdot 15) \\
a^{2}+50 & =60 \\
a^{2} & =10 \\
a & =\sqrt{10}
\end{aligned}
$$

What is the length of $\overline{B D}$?
(11) $\sqrt{10}$
(3) $\sqrt{50}$
(2) $\sqrt{20}$
(4) $\sqrt{110}$

Use this space for computations.

17 What is the distance between the points $(-3,2)$ and $(1,0)$?
(1) $2 \sqrt{2}$
(2) $2 \sqrt{3}$

$$
\begin{aligned}
(\text { (4) }) 2 \sqrt{5} & \sqrt{(-3-1)^{2}+(2-0)^{2}} \\
& \sqrt{16+4} \\
& \sqrt{20}=\sqrt{4} \sqrt{5}=2 \sqrt{5}
\end{aligned}
$$

18 What is an equation of the line that contains the point $(3,-1)$ and is perpendicular to the line whose equation is $y=-3 x+2 ? M=-3$
(1) $y=-3 x+8$
(3) $y=\frac{1}{3} x$
(2) $y=-3 x$
(4) $y=\frac{1}{3} x-2$
$y=m x+b$
$<y=\frac{1}{3}(3)+6$ $-1=1+6 \quad b=-2$

19 In the diagram below, $\overline{S Q}$ and $\overline{P R}$ intersect at $T, \overline{P Q}$ is drawn, and $\overline{P S} \| \overline{Q R}$.

Which technique can be used to prove $\triangle P S T \sim \triangle R Q T$?
(1) SAS
(3) ASA

Use this space for computations.

20 The equation of a circle is $(x-2)^{2}+(y+4)^{2}=4$. Which diagram is the graph of the circle?

(1)

(2)

(3)

(4)

Use this space for computations.

21 In the diagram below, $\triangle A B C$ is shown with $\overline{A C}$ extended through point D.

If $\mathrm{m} \angle B C D=6 x+2, \mathrm{~m} \angle B A C=3 x+15$, and $\mathrm{m} \angle A B C=2 x-1$, what is the value of x ?
(1) 12
(3) 16
(2) $14 \frac{10}{11}$
(4) $18 \frac{1}{9}$

22 Given $\triangle A B C \sim \triangle D E F$ such that $\frac{A B}{D E}=\frac{3}{2}$. Which statement is not true?
(1) $\frac{B C}{E F}=\frac{3}{2}$
(3) $\frac{\text { area of } \triangle A B C}{\text { area of } \triangle D E F}=\frac{9}{4}$
(2) $\frac{\mathrm{m} \angle A}{\mathrm{~m} \angle D}=\frac{3}{2}$
(4) $\frac{\text { perimeter of } \triangle A B C}{\text { perimeter of } \triangle D E F}=\frac{3}{2}$
$\frac{m \angle A}{m \angle D}=1$

Use this space for computations.

120
96
$\frac{112}{468}$

What is the degree measure of angle x ?
(1) 72
(3) 108
(2) 96
(4) 112

24 Through a given point, P, on a plane, how many lines can be drawn that are perpendicular to that plane?
(1)) 1
(3) more than 2
(2) 2
(4) none

25 What is the slope of a line that is perpendicular to the line whose equation is $3 x+4 y=12$?
(1) $\frac{3}{4} \quad m=\frac{-A}{B}=\frac{-3}{4}$
((3)) $\frac{4}{3}$
(2) $-\frac{3}{4}$
(4) $-\frac{4}{3}$

$$
m_{1}=\frac{4}{3}
$$

Use this space for computations.

26 What is the image of point $A(4,2)$ after the composition of transformations defined by $R_{90^{\circ}}{ }^{\circ} r_{y=x}$?
(1) $(-4,2)$
(3) $(-4,-2)$
(2) $(4,-2)$
(4) $(2,-4)$
$A(4,2)$
$A^{\prime}(2,4)$
after reflection $A^{\prime \prime}(-4,2)$ after rotation

27 Which expression represents the volume, in cubic centimeters, of the cylinder represented in the diagram below?

$$
\begin{aligned}
V & =\pi r^{2} h \\
& =\pi \cdot 6^{2} \cdot 27 \\
& =972 \pi
\end{aligned}
$$

(1) 162π
(3) 972π
(2) 324π
(4) $3,888 \pi$

28 What is the inverse of the statement "If two triangles are not similar, their corresponding angles are not congruent"?
(1) If two triangles are similar, their corresponding angles are not congruent.
(2) If corresponding angles of two triangles are not congruent, the triangles are not similar.
(3) If two triangles are similar, their corresponding angles are congruent.
(4) If corresponding angles of two triangles are congruent, the triangles are similar.

Part II
Answer all 6 questions in this part. Each correct answer will receive 2 credits. Clearly indicate the necessary steps, including appropriate formula substitutions, diagrams, graphs, charts, etc. For all questions in this part, a correct numerical answer with no work shown will receive only 1 credit. All answers should be written in pen, except for graphs and drawings, which should be done in pencil. [12]

29 In $\triangle R S T, \mathrm{~m} \angle R S T=46$ and $\overline{R S} \cong \overline{S T}$. Find $\mathrm{m} \angle S T R$.

$$
180=134+46
$$

30 Tim has a rectangular prism with a length of 10 centimeters, a width of 2 centimeters, and an unknown height. He needs to build another rectangular prism with a length of 5 centimeters and the same height as the original prism. The volume of the two prisms will be the same. Find the width, in centimeters, of the new prism.

$$
\begin{aligned}
V_{1} & =V_{2} \\
1, w_{1} h_{1} & =12 w_{2} h_{2} \\
(10)(2)(h) & =(5)\left(w_{2}\right)(h) \\
\frac{20}{5} & =\frac{S w_{2}}{5} \\
4 & =w_{2}
\end{aligned}
$$

31 In the diagram below of circle $C, \overline{Q R}$ is a diameter, and $Q(1,8)$ and $C(3.5,2)$ are points on a coordinate plane.

Find and state the coordinates of point R.

$$
(6,-4)
$$

32 Using a compass and straightedge, and $\overline{A B}$ below, construct an equilateral triangle with all sides congruent to $\overline{A B}$. [Leave all construction marks.]

33 In the diagram below of $\triangle A C D, E$ is a point on $\overline{A D}$ and B is a point on $\overline{A C}$, such that $\overline{E B} \| \overline{D C}$. If $A E=3, E D=6$, and $D C=15$, find the length of $\overline{E B}$.

$$
\begin{aligned}
& \frac{3}{x}=\frac{9}{15} \\
& 9 x=45 \\
& x=5
\end{aligned}
$$

34 In the diagram below of $\triangle T E M$, medians $\overline{T B}, \overline{E C}$, and $\overline{M A}$ intersect at D, and $T B=9$. Find the length of $\overline{T D}$.

Geometry - January ' 10

Answer all 3 questions in this part. Each correct answer will receive 4 credits. Clearly indicate the necessary steps, including appropriate formula substitutions, diagrams, graphs, charts, etc. For all questions in this part, a correct numerical answer with no work shown will receive only 1 credit. All answers should be written in pen, except for graphs and drawings, which should be done in pencil. [12]

35 In $\triangle K L M, \mathrm{~m} \angle K=36$ and $K M=5$. The transformation D_{2} is performed on $\triangle K L M$ to form $\triangle K^{\prime} L^{\prime} M^{\prime}$.
Find $m \angle K^{\prime}$. Justify your answer. 36. A dilation does not
Find the length of $\overline{K^{\prime} M^{\prime}}$. Justify your answer.

$$
5 \times 2=10
$$

36 Given: $J K L M$ is a parallelogram.

$$
\begin{aligned}
& \overline{J M} \cong \overline{L N} \\
& \angle L M N \cong \angle L N M
\end{aligned}
$$

Prove: JKLM is a rhombus.

STATEMBAT
(1) JKLM is a parallelogram, $J M \cong[N, \angle L M N \cong \angle L N M$
(2) $\overline{J K} \cong \overline{\triangle M}, \overline{J M} \cong \overline{C K}$
(3) $\overline{L M} \cong \overline{L N}$
(4) $\overline{L M} \cong \sqrt{5 M}$
(5) JKCM is a rhambus
(2) Opposite sides of a parallel ogram are conguent
(3) Isosceles Triangle Theorem
(4) Transitive Property
(5) All sides are congrvent

37 On the grid below, graph the points that are equidistant from both the x and y axes and the points that are 5 units from the origin. Label with an \mathbf{X} all points that satisfy both conditions.

- Part IV

Answer the question in this part. A correct answer will receive 6 credits. Clearly indicate the necessary steps, including appropriate formula substitutions, diagrams, graphs, charts, etc. A correct numerical answer with no work shown will receive only 1 credit. The answer should be written in pen. [6]

38 On the set of axes below, solve the following system of equations graphically for all values of x and y.

$$
\begin{aligned}
& \begin{array}{l}
y=(x-2)^{2}+4 \\
\begin{array}{l}
4 x+2 y=14 \\
y=-2 x+7
\end{array}
\end{array} \quad \text { vertex }(2,4)
\end{aligned}
$$

